PH. 240-344-9197

The Complete Guide to Bald Cypress Tree Stages of Growth

Post date |

The bald cypress (Taxodium distichum) is a majestic, deciduous conifer that is native to swamps and floodplains across the southeastern United States. This iconic tree goes through several distinct stages of growth throughout its long lifespan, which can exceed 1,000 years. In this comprehensive guide, we’ll explore the different bald cypress tree stages of growth so you can better understand and appreciate this amazing tree.

Seedling Stage

Bald cypress trees start their lives as small seedlings. The seeds are cone-shaped and about 1/4 inch long. They germinate readily in constantly moist conditions, especially when exposed to cold, moist stratification.

Once germinated, bald cypress seedlings grow a taproot and have flattened, feathery, light green needles. They can remain in the seedling stage for several years if growing conditions are not ideal. Bald cypress seedlings need full sun and consistent moisture to thrive. With the right conditions, seedlings may grow around 12 inches per year.

During this stage, bald cypress seedlings are vulnerable to browsing by deer and other wildlife. Rodents like squirrels and mice may dig up freshly planted seeds. Providing some protection can help ensure seedlings become established.

Sapling Stage

After a few years of growth, bald cypress trees transition to the sapling stage. This is when the central, dominant trunk becomes clearly defined. Saplings are usually around 3-10 feet tall with a trunk diameter of less than 4 inches.

Needles turn from light green to dark green as the sapling matures. The pyramidal form also starts taking shape during this stage. Bald cypress saplings continue relying on the taproot for moisture and nutrients. But lateral root growth increases to provide more stability.

It takes 5-10 years for bald cypress trees to reach the sapling stage. They remain saplings for another 10-15 years under ideal conditions before graduating to the pole stage.

Pole Stage

The pole stage begins when bald cypress trees reach heights of 16 feet or more and trunk diameters exceed 4 inches. This stage can last for several decades, as the central trunk continues growing thicker and taller.

Bald cypress poles typically have whorled branching starting about halfway up the trunk. This gives them a distinctive, open appearance below the foliage. The root system expands horizontally during the pole stage but still has a dominant taproot.

It’s common for bald cypress poles to grow 1-2 feet per year in an optimal environment They may start producing cones and seeds during this stage once they reach 20-30 years old. Poles are considered young adulthood for bald cypresses

Mature Tree Stage

Once a bald cypress tree surpasses 40 feet in height and 16 inches in diameter, it reaches maturity The crown spreads out and the iconic pyramid shape becomes unmistakable. Mature bald cypresses have flared or swollen trunk bases that provide stability in swampy ground

These trees transition from a taproot to a wider network of anchoring lateral roots. They may produce cypress “knees,” which are specialized roots growing up above the surface of the soil or water. Trees 100 years old and up to 100 feet tall are considered fully mature.

Growth slows during this stage, averaging just 1 foot of height gain annually. But bald cypress trees continue increasing trunk girth over time. Mature trees have high wildlife value, providing nesting sites, cover, and food.

Old Growth Stage

The final stage of development for bald cypress trees is old growth status. This is achieved around 400-500 years for individuals growing in optimal conditions. Old growth bald cypresses stand over 100 feet tall and can have trunk diameters exceeding 40 inches.

The tree’s appearance becomes more irregular with age. Branches exhibit drooping and gnarled growth. The bark takes on a deeply furrowed, vertically ridged texture. Hollows often form in the trunks of old trees. Knees around the base grow to larger sizes as well.

These ancient bald cypresses are venerable specimens that provide invaluable ecological services. They sequester huge amounts of carbon while supporting diverse wildlife. Some existing old growth bald cypresses are believed to be well over 1,000 years old.

Recognizing the Stages

Now that you know the timeline and characteristics of each growth stage, you can identify where a bald cypress tree is in its development.

  • Seedlings under 3 feet tall with skinny trunks are still juveniles establishing roots.

  • Once around 10 feet tall and 4 inches wide, they become saplings.

  • After a few more decades of growth, you’ll recognize poles by their whorled branching and increasing girth.

  • When mature height and spread is reached, the iconic pyramidal bald cypress form is unmistakable.

  • And ancient old growth trees are hard to miss, with enormous gnarled trunks and knees protruding from the base.

Understanding these bald cypress tree stages of growth allows you to appreciate the tree’s full lifespan from youth to old age. With proper conditions, you can enjoy watching a bald cypress grow through all the stages over decades or even centuries.

Caring for Bald Cypress Through the Stages

Certain care requirements change for bald cypress trees as they mature. Here’s a quick overview of how to support these trees through each stage of growth:

Seedlings – Ensure consistent moisture, full sun, and protection from wildlife browsing. Use weed barrier mats to reduce competition.

Saplings – Monitor moisture and only water during droughts. Mulch around the trunk but avoid touching it. Prune only dead or damaged branches.

Poles – Water deeply every 2-3 weeks in dry periods. Prune branches up 1/3 the height for form and structure.

Mature – Water mature trees during drought. Prune only for safety or clearance. Fertilize annually with slow release or organic blend.

Old Growth – Provide space and prune carefully to preserve the natural form. Control pests like bagworms by handpicking or spraying.

With the right care matched to their stage of growth, your bald cypress should thrive for many generations to come.

Final Thoughts

Understanding these bald cypress tree stages of growth allows you to provide appropriate care as your tree ages. With the right conditions, you may be able to enjoy a bald cypress for many decades as it transitions through the stages to become an ancient, majestic swamp sentinel.

Frequency of Entities:
bald cypress: 22
tree: 22
growth: 16
stage: 15
seedling: 5
sapling: 5
pole: 5
mature: 4
old growth: 4
trunk: 4

bald cypress tree stages of growth

Reproduction and Early Growth

Flowering and Fruiting- Baldcypress is monoecious. Male and female strobili mature in one growing season from buds formed the previous year. The male catkins are about 2 mm (0.08 in) in diameter and are borne in slender, purplish, drooping clusters 7 to 13 cm (3 to 5 in) long that are conspicuous during the winter on this deciduous conifer. Pollen is shed in March and April. Female conelets are found singly or in clusters of two or three. The globose cones turn from green to brownish purple as they mature from October to December. The cones are 13 to 36 mm (0.5 to 1.41 in) in diameter and consist of 9 to 15 4-sided scales that break away irregularly after maturity. Each scale can bear two irregular, triangle-shaped seeds that have thick, horny, warty coats and projecting flanges (19,39,44,45). Number of seeds per cone averages 16 and ranges from 2 to 34 (20). Cleaned seeds number from about 5600 to 18,430/kg (2,540 to 8,360/lb) (39,44,45).

Seed Production and Dissemination- Some seeds are produced every year, and good seed crops occur at 3- to 5-year intervals (45). At maturity, the cone scales with their resin-coated seeds adhering to them, or sometimes entire cones, drop to the water or ground (42). This drop of mature seeds is often hastened by squirrels, which eat baldcypress seeds but usually drop several scales with undamaged seeds still attached from each cone that they pick (5). Floodwaters spread the scales or cones along streams and are the most important means of seed dissemination (44).

Seedling Development- Germination is epigeal (45). Under swamp conditions, germination generally takes place on a sphagnum moss or a wet-muck seedbed. Seeds will not germinate under water, but some will remain viable for 30 months under water. On the other hand, seeds usually fail to germinate on better drained soils because of the lack of surface water. Thus, a soil saturated but not flooded for a period of 1 to 3 months after seedfall is required for germination (44).

After germination, seedlings must grow fast enough to keep at least part of their crowns above floodwaters for most of the growing season (10,12,13). Baldcypress seedlings can endure partial shading but require overhead light for good growth (49). Seedlings in swamps often reach heights of 20 to 75 cm (8 to 30 in) their first year (7). Growth is checked when a seedling is completely submerged by flooding, and prolonged submergence kills the seedling (44).

In nurseries, Taxodium seeds show an apparent in ternal dormancy that can be overcome by various treatments that usually include cold stratification or submerging in water for 60 days (19). Nursery beds are sown in spring with pretreated seeds or in fall with untreated seeds (45). Seedlings usually reach 75 to 100 cm (30 to 40 in) in height during their first (and usually only) year in the nursery (49). Average size of 1-0 nursery-grown seedlings in a seed source test including 72 families was 81.4 cm (32 in) tall and 1.1 cm (0.43 in) in diameter (19).

Control of competing vegetation may be necessary for a year or more for baldcypress planted outside of swamps. Five years after planting baldcypress on a harrowed and bedded poorly drained site in Florida, survival was high but heights had increased only 30 cm (12 in), probably because of heavy herbaceous competition (25). Seedlings grown in a crawfish pond in Louisiana, where weed control and soil moisture were excellent through June, averaged 2.9 m (9.7 ft) and 3.5 cm (1.4 in) d.b.h. after 5 years. However, a replicate of the same sources planted on an old soybean field, where weed control and soil moisture were poor, resulted in the same d.b.h. but a smaller average seedling height of 2.1 m (7.0 ft) (John R. Toliver, unpublished data). When planted in a residential yard and weeded and watered averaged 3.7 m (12 ft) tall 3 years later (49).

Vegetative Reproduction- Baldcypress is one of the few conifer species that sprouts. Thrifty sprouts are generally produced from stumps of young trees, but trees up to 60 years old also send up healthy sprouts if the trees are cut during the fall or winter. However, survival of these sprouts is often poor and those that live are usually poorly shaped and do not make quality sawtimber trees (10,13,38). Stumps of trees up to 200 years old may also sprout, but the sprouts are not as vigorous and are more subject to wind damage as the stump decays (44). In the only report on the rooting of baldcypress cuttings found in the literature, cuttings from trees 5 years old rooted better than those from older trees (30).

Sapling and Pole Stages to Maturity

Growth and Yield- Baldcypress is reputed to be slow growing and very long-lived, but during some growing seasons, perhaps in response to soil-moisture fluctuations, many baldcypress appear to produce more than one ring of stemwood. Counting these false rings in with true annual rings has led to overestimations of ages and consequently to underestimations of growth rates.

A study in three baldcypress plantations of known age revealed that on increment cores under magnification, true latewood appeared as narrow bands of small, thick-walled cells, and the stains that cause false latewood tended to disappear. The larger trees in the study had more apparent rings than smaller trees of the same age, and conventional ring counts averaged about 1.6 times the actual age (44).

Many years before that study, an investigator having no trees of known age to confirm his age counts, but stating that he could distinguish the stains of false latewood from true latewood bands, concluded that trees 400 to 600 years old were common in many virgin stands of baldcypress and that a few trees reached about 1,200 years (44).

Under forest conditions, baldcypress stems generally require about 200 years to reach sufficient size to yield a high proportion of heartwood lumber (28). Also at about age 200, height growth ceases (44). After this age many baldcypress slowly die back from the top as a fungus-caused rot progresses downward through the stem.

Baldcypress is noted for the large size it can attain. In virgin forests, the largest trees were 215 to 365 cm (84 to 144 in) in d.b.h. and 43 to 46 m (140 to 150 ft) in height (44). In the 1982 “National Register of Big Trees,” the champion baldcypress, which grows in Louisiana, was reported to be 520.7 cm (205 in) in d.b.h. and 25 m (83 ft) tall (1).

Baldcypress also is noted for its high merchantable yields. In virgin stands, yields of 112 to 196 m³/ha (8,000 to 14,000 fbm/acre) over tracts hundreds of hectares in extent were common, and some stands likely exceeded 1400 m/ha (100,000 fbm/acre). One tree in Okefenokee Swamp in Georgia scaled 168 m³ (12,000 fbm) (44).

Some second-growth stands are approaching the yields of the best virgin stands. A 96-year-old stand in Mississippi contained 980 m³/ha (70,000 fbm/acre) and its crop trees averaged 36.3 m (119 ft) tall (49). A 63-year-old second-growth stand in Louisiana averaged 1,260 cypress and 258 swamp tupelo trees per hectare, respectively (504 and 103/acre), resulting in volumes of 409 and 107 m³/ha (6,356 and 1,423 ft³/acre), respectively (15).

The sample is limited, but some plantations, at least, grow faster than natural stands. In Mississippi, one plantation established on abandoned cropland had dominants averaging 21 m (69 ft) tall at 41 years (49), and another plantation that had been cultivated or mowed for the first 10 years contained 175 m³/ha (2,333 ft³/acre) at age 31 and the 30 largest trees averaged 21.6 m (72 ft) tall and 36 cm (14.2 in.) d.b.h. Ten-year volume growth (from age 21 to 31 yrs) of the trees in this plantation was 77.5 m³/ha (1,033 ft³/acre) (29).

Baldcypress grows well at high stand densities. From age 60 to 70 years, a baldcypress-hardwood. stand in Florida increased from 39 to 43 m³/ha (168 to 189 ft³/acre) in basal area and from 359 to 428 m³/ha (57 to 68 cords/acre) in volume. The baldcypress grew at a faster rate than the tupelo and sweetgum. Thinning plots within the stand to various densities at age 60 resulted in faster growth of individual crop trees, but in slower growth per unit area than for the unthinned part of the stand (33).

Density was even higher in a second-growth stand of baldcypress in Mississippi: 61 m²/ha (265 ft²/acre) at age 78. Thinning that stand to 46 m²/ha (200 ft²/acre) increased growth through age 96 more than did no thinning or a heavier thinning (49). Volume growth of a 63-year-old second-growth stand in Louisiana, with an average density of 50 m²/ha (220 ft²/acre) in basal area, was 54 m³/ha (716 ft³/acre) over a 5-year period. Crown thinning in this stand increased diameter growth and appeared to increase sawtimber volume per hectare after 5 years. Heavier thinning intensities stimulated epicormic branching on many trees, which could lower log quality. However, the largest dominant crop trees were least affected by epicormic branching (15).

Cypress swamps and other forested wetlands that receive periodic nutrient subsidies from floodwaters probably are some of the worlds most productive ecosystems. The annual above-ground production of biomass in a baldcypress-ash floodplain forest in Florida was 15 700 kg/ha (14,000 lb/acre) (4). In comparison, terrestrial forest communities in the temperate region often produce 12 300 to 15 000 kg/ha (11,000 to 13,400 lb/acre) annually (11).

Stillwater forested wetlands do not receive nutrient subsidies from floodwaters, and they have production rates comparable to, or lower than, those of terrestrial forests. Such wetlands, however, offer additional benefits such as storage of water and peat (4).

Rooting Habit- Baldcypress seedlings develop a taproot (49), and at least some planted baldcypress up to 25 cm (10 in) in d.b.h. maintain taproots (43). Older, naturally seeded baldcypress in swamps develop several descending roots that provide anchorage, and numerous lateral roots from which rise peculiar conical structures known as “knees” (23). These knees vary in height from several centimeters to more than 3.7 m (12 ft), depending apparently upon the average water level of the site (44,47). Knees are less likely to form in absence of flooding or where permanently standing water is 30 cm (12 in) or more in depth (48). However, small knees have been observed on many trees not subjected to flooding (3) and it is not uncommon for ornamental trees to produce knees. Research has found no physiological function for cypress knees. They may be beneficial as aeration organs but are not of critical importance to survival (17). Knees may also help to anchor trees because they develop large masses of roots.

The extensive root system along with a buttressed base make baldcypress windfirm in soft, wet soils. Even winds of hurricane force rarely overturn them (44).

Reaction to Competition- The relative shade-tolerance of baldcypress has not been definitely established. Seeds often germinate in heavily shaded places but usually do not survive or develop into large trees (10,13). Most successful stands regenerate in large openings. The species grows slowly in partial shade but the best growth occurs with full overhead light. For these reasons, intermediate shade tolerance seems the most appropriate classification. In fully stocked stands baldcypress characteristically has a clean, smooth stem and small crown, readily pruning itself of branches, but in poorly stocked stands it is very limby (44).

Damaging Agents- A fungus, Stereum taxodi, that causes a brown pocket rot known as “pecky cypress” attacks the heartwood of living baldcypress trees, especially the overmature ones. The fungus most frequently gains entrance in the crown and slowly works downward, sometimes destroying a considerable part of the heartwood at the base of the tree. The action of the fungus ceases when the tree is felled. The durability of baldcypress lumber, so far as is known, is not affected by the presence of pecky material (28,44).

A few other fungi attack the sapwood and heartwood of baldcypress and a few needle and twig fungi have been reported, but none of these is known to cause serious damage (26).

Several insects attack baldcypress, but damage is generally minor (21). However, the fruit tree leafroller, (Archips argyrospila), previously unreported on baldcypress, became epidemic in 1983, in the lower Atchafalaya Basin and adjoining drainages to the east and south in Louisiana. The leafroller larvae commence webbing and feeding on cypress needles as soon as buds break and small leaflets expand. Large-scale killing of trees has not been observed, but those suffering repeated leafroller defoliation show die-back. Mortality of pole-sized trees has been linked to defoliation (21).

The cypress flea beetle (Systena marginalis) causes discoloration of foliage and the cypress looper (Anacamptodes pergracilis) causes defoliation (44). Another common defoliator is the bagworm (Thyridopteryx ephemeraeformis) (42). The southern cypress bark beetle (Phloeosinus taxodii) tunnels beneath the bark of limbs and trunks (27). The baldcypress coneworm (Dioryctria pygmaeella) is a serious pest of cones of baldcypress and pondcypress, capable of destroying more than 75 percent of a single years crop (34).

Nutria (Myocastor coypu) often clip or uproot newly planted cypress seedlings before the root systems are fully established, thus killing the seedlings (12). Where high nutria populations occur, entire plantings are often destroyed in a few days. The Soil Conservation Service recommends cessation of baldcypress planting until control measures are found. To date, the only successful control has been placement of a chicken wire guard around each seedling (12). Deer and swamp rabbits clip seedlings above the ground and eat the tender stems and branches, but these seedlings generally resprout and continue to grow (18,44).

The unusual and pleasing appearance of baldcypress-its knees, buttressed base, massive bole, and irregular crown often festooned with Spanish moss-has led to its introduction as an ornamental in many parts of the world (3,45).

Baldcypress seeds are eaten by wild turkeys, squirrels, evening grosbeaks, and wood ducks (6); they are a minor part of the diet of other waterfowl and wading birds (32); and they were an important food for the now-extinct Carolina parakeet (6). Large old baldcypress furnish unique habitats for some wildlife. Bald eagles and ospreys nest in the tops. Yellow-throated warblers forage in the Spanish moss or resurrection fern (Polypodium polypodioides) often found on old trees. Prothonotary warblers achieve their highest densities in baldcypress-tupelo stands where they find nesting cavities in old decaying baldcypress knees. Catfish spawn in submerged hollow cypress logs (22).

Baldcypress wood has a multitude of uses and is well known for its ability to resist decay. Cypressene, an oil extracted from the wood, is believed to give baldcypress high decay resistance. Older baldcypress, particularly old-growth, virgin trees growing in the deep swamps, is known as tidewater redcypress and is considered to be very resistant to rot (3). For this reason, cypress wood has long been favored in the building construction, fences, planking in boats, river pilings, furniture, interior trim, cabinetry, sills, rafters, siding, flooring and shingles, garden boxes, greenhouses, and many other uses (3). However, second-growth baldcypress lack the decay resistant heartwood of the old-growth trees (8,9). At what age or size decay resistance develops is unknown, but wood from trees at least 63 years old is susceptible to rot (9). Caution is recommended in the use of lumber from these trees in exposed situations, and the wood should be treated if rot resistance is essential (3,9). Pecky cypress, caused by the fungus Stereum taxodii, is used in products where durability rather than water tightness is required, and in decorative wall paneling (14,28).

Riverine swamps of baldcypress cause floodwaters to spread out, slow down, and infiltrate the soil. Thus, these stands reduce damage from floods and act as sediment and pollutant traps (46).

Recognized varieties of baldcypress are indicated in the introduction to this report. Baldcypress grows across a range of wetland sites and over a wide geographic area, however, so other races may exist. A cultivar, Pendens, having pendulous branches, has been developed (50). In Russia, hybridization of baldcypress with redwood (Sequoia sempervirens) has been reported (44).

Genetic variation of baldcypress seed, cone, and nursery- seedling growth was explored in two geographic seed source studies incorporating seed collected along the Mississippi River flood plain from Illinois to Louisiana. Variation among seed sources and families-within-source was of significant magnitude to indicate a potential for genetic selection and gain in growth. However, no specific pattern of variation was noted (18,19,20).

Pondcypress grows from southeastern Virginia to southern Florida to southeastern Louisiana and almost always at elevations below 30 m (100 ft).

Humid and moist subhumid climatic types occur within the range of pondcypress. Normal precipitation increases from about 1220 mm (48 in) per year in southeastern Virginia to 1630 mm (64 in) along the east Gulf Coast. The growing season increases from about 240 days in southeastern Virginia to about 300 days in southeastern Louisiana to virtually 365 days in southern Florida. Average annual minimum temperatures increase from about -12° C (10° F) in southeastern Virginia to 4° C (40° F) in southern Florida (31).

Pondcypress grows on the very poor and poorly drained phases of Spodosols and Ultisols (40) of the thermic and hyperthermic soil temperature regimes. Soils range from sands to clays to mucks to peats.

Pondcypress occupies the shallow ponds and poorly drained areas of the Coastal Plain and rarely grows in the river and stream swamps as does baldcypress (44). There is evidence that pondcypress does not grow on soils with a pH above 6.8 and bald cypress does not grow on soils with a pH below 5.5 (35), but it is not known if the range in which both grow might be narrower than pH 5.5 to 6.8.

Pondcypress sites in general are much less fertile than baldcypress sites. Pondcypress grows on more acid soils, and it seldom grows on sites that receive periodic subsidies of nutrients from floodwaters.

Pondcypress stands almost always are found on flat topography or in slight depressions often called domes (16); therefore, little is known concerning growth of pondcypress in relation to higher topographic features.

Pondcypress is the dominant species in the forest cover type Pondcypress (Society of American Foresters Type 100) (17). It is an associate species in Longleaf Pine-Slash Pine (Type 83), Slash Pine (Type 84), Slash Pine-Hardwood (Type 85), Pond Pine (Type 98), Baldcypress (Type 101), Water Tupelo-Swamp Tupelo (Type 103), and Sweetbay-Swamp Tupelo-Redbay (Type 104).

The most common sites for pondcypress are the shallow ponds of the Coastal Plain. Here, its chief tree associate is swamp tupelo. Along the margins and on slightly elevated positions within the ponds, associates are pines (Pinus spp.), red maple, sweetbay, and loblolly-bay (Gordonia lasianthus). Lesser vegetation associates include common buttonbush, yaupon (Ilex vomitoria), swamp cyrilla (Cyrilla racemiflora), viburnums, swamp privet (Forestiera acuminata), southern bayberry (Myrica cerifera), bitter gallberry (Ilex glabra), ferns, and vines (17).

In addition to growing in the ponds of the Coastal Plain, pondcypress is found in some of the swamps along “black water” rivers and creeks, in Carolina bays, in the Okefenokee Swamp, and in pondcypress savannahs. On these various sites, associates of pond cypress include most of those listed above plus many others (2,46).

Bald Cyprus Tree- Taxodium distichum – Growing Bald Cypress

FAQ

How long does it take for a bald cypress tree to grow?

It’s a fast-growing tree, gaining one or two feet per year as it grows to maturity, at which time it will normally reach 60 to 70 feet, but it can grow up to 100 feet tall. It’s also a long-lived tree, and in the right conditions, will live for a century or more.

What is the growth pattern of bald cypress?

Narrowly to broadly pyramidal when young, baldcypress, the state tree of Louisiana, eventually develops into a broad-topped, spreading, open specimen when mature. Capable of reaching 100 to 150 feet in height, most landscape specimens are rarely seen in this open form because they are usually much younger and shorter.

What is the life cycle of a bald cypress?

Sprouts can form from the cut trunk of bald cypress trees as old as 60 years. Most live up to 600 years, but some individuals have survived 1,200 years. Bald cypress trees provide habitat for many species.

What are the negatives of bald cypress?

The bald cypress is a fairly hardy tree; but it is sometimes susceptible to diseases like twig blight and pests like gall mites and spider mites¹. Chlorosis (loss of chlorophyll9) can also occur if the soil that the tree is rooted in is too alkaline¹.

Leave a Comment